PNG  IHDR;IDATxܻn0K )(pA 7LeG{ §㻢|ذaÆ 6lذaÆ 6lذaÆ 6lom$^yذag5bÆ 6lذaÆ 6lذa{ 6lذaÆ `}HFkm,mӪôô! x|'ܢ˟;E:9&ᶒ}{v]n&6 h_tڠ͵-ҫZ;Z$.Pkž)!o>}leQfJTu іچ\X=8Rن4`Vwl>nG^is"ms$ui?wbs[m6K4O.4%/bC%t Mז -lG6mrz2s%9s@-k9=)kB5\+͂Zsٲ Rn~GRC wIcIn7jJhۛNCS|j08yiHKֶۛkɈ+;SzL/F*\Ԕ#"5m2[S=gnaPeғL lذaÆ 6l^ḵaÆ 6lذaÆ 6lذa; _ذaÆ 6lذaÆ 6lذaÆ RIENDB` package Paws::Personalize::CreateSolution; use Moose; has DatasetGroupArn => (is => 'ro', isa => 'Str', traits => ['NameInRequest'], request_name => 'datasetGroupArn' , required => 1); has EventType => (is => 'ro', isa => 'Str', traits => ['NameInRequest'], request_name => 'eventType' ); has Name => (is => 'ro', isa => 'Str', traits => ['NameInRequest'], request_name => 'name' , required => 1); has PerformAutoML => (is => 'ro', isa => 'Bool', traits => ['NameInRequest'], request_name => 'performAutoML' ); has PerformHPO => (is => 'ro', isa => 'Bool', traits => ['NameInRequest'], request_name => 'performHPO' ); has RecipeArn => (is => 'ro', isa => 'Str', traits => ['NameInRequest'], request_name => 'recipeArn' ); has SolutionConfig => (is => 'ro', isa => 'Paws::Personalize::SolutionConfig', traits => ['NameInRequest'], request_name => 'solutionConfig' ); use MooseX::ClassAttribute; class_has _api_call => (isa => 'Str', is => 'ro', default => 'CreateSolution'); class_has _returns => (isa => 'Str', is => 'ro', default => 'Paws::Personalize::CreateSolutionResponse'); class_has _result_key => (isa => 'Str', is => 'ro'); 1; ### main pod documentation begin ### =head1 NAME Paws::Personalize::CreateSolution - Arguments for method CreateSolution on L =head1 DESCRIPTION This class represents the parameters used for calling the method CreateSolution on the L service. Use the attributes of this class as arguments to method CreateSolution. You shouldn't make instances of this class. Each attribute should be used as a named argument in the call to CreateSolution. =head1 SYNOPSIS my $personalize = Paws->service('Personalize'); my $CreateSolutionResponse = $personalize->CreateSolution( DatasetGroupArn => 'MyArn', Name => 'MyName', EventType => 'MyEventType', # OPTIONAL PerformAutoML => 1, # OPTIONAL PerformHPO => 1, # OPTIONAL RecipeArn => 'MyArn', # OPTIONAL SolutionConfig => { AlgorithmHyperParameters => { 'MyParameterName' => 'MyParameterValue', # key: max: 256, value: max: 1000 }, # max: 100; OPTIONAL AutoMLConfig => { MetricName => 'MyMetricName', # max: 256; OPTIONAL RecipeList => [ 'MyArn', ... # max: 256 ], # max: 100; OPTIONAL }, # OPTIONAL EventValueThreshold => 'MyEventValueThreshold', # max: 256; OPTIONAL FeatureTransformationParameters => { 'MyParameterName' => 'MyParameterValue', # key: max: 256, value: max: 1000 }, # max: 100; OPTIONAL HpoConfig => { AlgorithmHyperParameterRanges => { CategoricalHyperParameterRanges => [ { Name => 'MyParameterName', # max: 256 Values => [ 'MyCategoricalValue', ... # max: 1000 ], # max: 100; OPTIONAL }, ... ], # max: 100; OPTIONAL ContinuousHyperParameterRanges => [ { MaxValue => 1, # min: -1000000; OPTIONAL MinValue => 1, # min: -1000000; OPTIONAL Name => 'MyParameterName', # max: 256 }, ... ], # max: 100; OPTIONAL IntegerHyperParameterRanges => [ { MaxValue => 1, # max: 1000000; OPTIONAL MinValue => 1, # min: -1000000; OPTIONAL Name => 'MyParameterName', # max: 256 }, ... ], # max: 100; OPTIONAL }, # OPTIONAL HpoObjective => { MetricName => 'MyMetricName', # max: 256; OPTIONAL MetricRegex => 'MyMetricRegex', # max: 256; OPTIONAL Type => 'MyHPOObjectiveType', # max: 256; OPTIONAL }, # OPTIONAL HpoResourceConfig => { MaxNumberOfTrainingJobs => 'MyHPOResource', # max: 256; OPTIONAL MaxParallelTrainingJobs => 'MyHPOResource', # max: 256; OPTIONAL }, # OPTIONAL }, # OPTIONAL OptimizationObjective => { ItemAttribute => 'MyItemAttribute', # min: 1, max: 150; OPTIONAL ObjectiveSensitivity => 'LOW', # values: LOW, MEDIUM, HIGH, OFF; OPTIONAL }, # OPTIONAL }, # OPTIONAL ); # Results: my $SolutionArn = $CreateSolutionResponse->SolutionArn; # Returns a L object. Values for attributes that are native types (Int, String, Float, etc) can passed as-is (scalar values). Values for complex Types (objects) can be passed as a HashRef. The keys and values of the hashref will be used to instance the underlying object. For the AWS API documentation, see L =head1 ATTRIBUTES =head2 B DatasetGroupArn => Str The Amazon Resource Name (ARN) of the dataset group that provides the training data. =head2 EventType => Str When your have multiple event types (using an C schema field), this parameter specifies which event type (for example, 'click' or 'like') is used for training the model. If you do not provide an C, Amazon Personalize will use all interactions for training with equal weight regardless of type. =head2 B Name => Str The name for the solution. =head2 PerformAutoML => Bool Whether to perform automated machine learning (AutoML). The default is C. For this case, you must specify C. When set to C, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit C. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe. =head2 PerformHPO => Bool Whether to perform hyperparameter optimization (HPO) on the specified or selected recipe. The default is C. When performing AutoML, this parameter is always C and you should not set it to C. =head2 RecipeArn => Str The ARN of the recipe to use for model training. Only specified when C is false. =head2 SolutionConfig => L The configuration to use with the solution. When C is set to true, Amazon Personalize only evaluates the C section of the solution configuration. Amazon Personalize doesn't support configuring the C at this time. =head1 SEE ALSO This class forms part of L, documenting arguments for method CreateSolution in L =head1 BUGS and CONTRIBUTIONS The source code is located here: L Please report bugs to: L =cut